What are the Core Strategies for Successful Big Data Analysis Breakthroughs?

Big data has been around for quite a while now creating buzz and effect in transformation of companies, industries and how they handle their growth strategy. It’s summation or drawing conclusion from various streams or sources of data from businesses and industries like, merchandising, textiles, supermarkets and departmental stores, financial services, security oriented firms, performance data and statistics collecting entities, auto industry to information technology etc every branch of business seems interested in the details that unravel the fundamental implications of big data.

However, at every stage, drawing the fine realities and perfect implications of big data flows with a set of core strategies that help harmonize and bring meaningfulness to sets of data. What is important to remember is that big data is a purely scientific data analytical tool that unravels a slew of challenges in industry or business management and critical decision making. Thus, whenever running any strategy or initiative that involves or has big data at its core, it is vital to align business or industry objectives with leadership, management and approach to big data science application.

Major and Core Strategies that Can Inspire Big Data Analysis Success

Maintain Equity between Qualitative and Quantitative Data Analysis: qualitative data analysis explores data in terms exploratory data analysis. Qualitative data research looks at the underlying themes in vast sets of big data. The data can be structured or unstructured and with breakthrough success it reveals concepts and patterns in big data that were once perceived nonexistent.Quantitative big data analysis develops and tests hypotheses once data themes are developed. Quantitative big data analysis also justifies which qualitative data research nurtures and develops. Quantitative data analysis is much more rigorous and critical than its more exploratory qualitative data analysis to the extent polarization. In a mixed qualitative data analysis and quantitative data analysis it is commendable to maintain mixed-method research for proper structures in big data analysis.

Ensure Big Data Science Product Development
Generally, there are three layers of fine corporate strategy; competitive, distinctive and breakthrough. By employing breakthrough strategy indicates intentions of going higher quality wise with forthcoming products or services. And should industry be prediction business and the current best competitive product in the market has about 70% accuracy, breakthrough strategy should involve products with higher or closer to 95% accuracy. This means best faster and most reliable prediction algorithm that necessitates better and bright big data analysts and scientists.

Realistic Achievable Goals on Big Data Research
The difference between over ambitiousness and realistic assessment of expectations is in depth and strength of commitment and intellect of data analysts. Realistic research and development must backup plans. At times, research and development is variable as there no guarantee of even breakthrough.

And so for businesses and industries to attain successful big data strategy and display competitive or distinctive qualities; management-centric, quantitative big data approach emphasizing proper planning, control as well as accuracy is the most appropriate route. However, to attain transformation to higher breakthrough qualities; leadership-centric, qualitative big data approach emphasizing exploration and change leadership is the most advantageous option.